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We close this introduction by indicating briefly some similarities and differences

between this paper and others which have been written previously. The standard implicit—

function theorem was used in [3], (4], 1111 to analyze perturbed nonlinear programming

problems under stronger hypotheses than those we use here. Extensions of that approach

to generalized equations will be reported in the forthcoming dissertation of A. Reinoza

in the Computer Sciences Department of the University of Wisconsin—Madison. Levitin (7],

18] , [9] has investigated stability aspects of infinite—dimensional optimization

problems , and Mangasarian 1101 has obtained uniqueness results in linear programming

using hypotheses which seem to be closely related to those used here.

Fina l ly ,  we mention two papers treating the stability of convex quadratic programming

problems: Daniel 12] used assumptions similar to those made in (12], while Hager [5]

imposed conditions similar to those used in this paper. However, Hager ’s method of

analysis is quite different from ours: for example, he assumes that unique solutions

will exist for all of the perturbed problems that he considers, and he then proceeds

to investigate the continuity properties of these solutions. We prefer to identify

conditions on the unperturbed problem which will permit us to prove that solutions of

the perturbed problems will in fact exist, and which in addition enable us to analyze

their continuity properties.

Many other papers have, of course, been written on stability questions related to

those we investigate . The above papers represent only a sample of the literature; many

additional references can be found in them .

2. Strong regularity and local solvability. In this section we define a condition,

called strong regularity, which can be satisfied by a generalized equation at a solution

point. We prove a basic solvability theorem which says, roughly speaking, that if a

generalized equation is strongly regular at a solution point then it is invertible near

that point and the inverse function is Lipschitzian; further , any generalized equation

which is close , in a suitable sense , to the one with which we are working will share
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We illustrate next another application of  Theorem 2.1 , this time to the estaL ic; -

ment of an analogue of the Banach perturbation lemma for linear operators.

THEOREM 2 . 4 :  Let X be a Banacj~~~pace, let a 0 b e a point of the dual scace

let C be a closed co,ivex se-t in X and let A
0 

belon g to L (X ,X ’) (the- spa-- .- cf

bounded linear operators from X to X ’). Suppose that x
0 

is a point of X wh ich

satisfies the generalized equ ation

0 €  A~x + a 0 4 ic~~ ( x)  . (2. -ic

If ( 2 . 9 )  is strongly regular at x0 wi th associated Lipsch itz modulus ) , t h en

there exist neighborhoods M of A
0 

in L(X ,X ’), N of a
0 

and W of the or i gin

in X ’ , and V of x
0
, such tha t if for A € M , a € N and x € V one define-s

T ( A ,a,x) : Ax + a +

then T(A ,a,.) 1 fl V is a single—valued function on N and is Lipschitzian there with

modulus A (l — A D A —  A0l1 )
1 .

PROOF ; Apply Theorem 2.1 with P := L(X,X ’) cc x ’ , p0 := (A
0

,a 0
) ,  and

f ( p , x) := Ax ÷ a (with any positive c) co produce neighborhoods N
1 

of (A
0
,a
0
)

arid V of x0, with a single—valued function x : N
1 
• V h a v i n g  the property that

for each (A,a) C N
1
, x ( A ,a) is the unique  solution in V of 0 € Ax + a +

Note that (2.4) implies Iix(A ,a) - x011 ~ ( A  + ci (A - A0
) x

0 
+ (a - a0 ) for such (A , a)

choose neighborhoods M of A
0
, N of 

~~~~
‘ and N of the or ig in  in X ’ , such that

(I) for each A € H , A II A — A Q II < 1

(2 ) M X  ( N — W ) C N
1

and

(3) for each A € N , a C N and y C N, the point y + (A
0 

— A)x(A,a ) + (a 0 — a) lies

in the neighborhood U of the- origin given in the definition of strong regular ity for (2.9).

Evidently for any A C M , a C N and y C N, the generalized equation

y C Ax -
~ a + 

~~C ( c )  is un i quely solvable in V (by x (A,a — y ) )  . Let y
1 

and

belong to W , and let x 1 and x 2 be the solutions associated wi th  y
1 

and v 2 .

—9—
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Then for  i = 1, 2 we have

y ,  + (A0 
— A ) x . + (a

0 
— a) € A

0x . + a0 +

Thus , by strong regularity ,

11x 1 — x 2 11 ~ A li [y 1 
÷ A

0 
— A ix 1 

+ (a
0 

— a ) i  — [y 2 + (A
0 

— A)x
2 

+ (a
0 

— aH hl

< A l ~y~~— Y2 i1 ~ A Il A o
_ A ll Il X l

_ X2il

But as A II A 0 - A ll 1, we finally obtain

- x 2 11 < A (1 - A IA 0 
- A l l ~~

l 11y 1 - II
which completes the proof.

It should be noted tha t this result says , among other things , that if a generalized

equation is strongly regular at a solution x0 , then any s u f f i c i e n t l y  “close ”

generalized equation will be strongly regular at its solution near x 0 (which must

exist and be uni que by Theorem 2 . 1 ) ;  f u r t h e r , the neighborhoods involved in the def ini-

tion of strong regularity can be taken to be the same for all nearby generalized equations.

This is a property which is not available under the weaker hypotheses used in ( 12) .

3. Conditions for strong regular i ty.  ‘,4e have seen that nonlinear generalized

equations can be expected to behave in desirable ways if the i r  linearizations are strongly

regular at the points in question. In this section we develop a general condition

which is sufficient for strong regul3rity, as well as a sharper condi t ion, designed for

the case most frequently seen in applications , which we show to be both necessary and

su f f i c i en t .

To begin with , we suppose tha t  we are considering a generalized equation of the

form 0 € Ax + a I- cc) (xi , where P is n x n. a € R~~, and C is a nonempty

polyhedral convex Set in I(~~. Let x
0 

be a solution of this equation , and consider

the inclusion

y € Ax 4- a + 2q ~~(x)  , ‘3. 1)

for y near 0 and x near  x
0

. We claim that this can actually be reduced to the

consideration of

L 
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z e Bw + 3i)c (w) , (3.2)

for some non—negative integers r , a with r + s < n , a square matrix B of dimension

Cr + 8 ) ,  a pointed polyhedral convex cone K in P5 of dimension s , an. a points

z, w near the origin in ~ r+s This reduction is carried out in detail in the appendix

to this paper , but here we indicate how it may be done in the case found most frequently

in applications: namely, that in which C = x I~~. This case includes the standard

linear complementarity problem (9. = 0 ,  m = ri) and the problem of quadratic programming

Without implicit constraints, such as non—negativity (with 9. the number of variables

and equality constraints, and m the number of inequality constraints). If C = P
t x

we know that for i = 9. + 1 9. + a n we must have (Ax
0 

+ a ) .  > 0, with ec~uality

if (x ) . > 0. Assume that the variables and the elements of Ax + a have beenO i  0

reordered , if necessary, so that

for i = 9. + 1 9. + j ,  (Ax + a). = 0 and (x ). > 00 3. 03.

for i = 9. + j + l,...,i + j + s , (Ax0 + a). = 0 arid (x
0
). = 0

for i = 9. + j + S + 1 n, (Ax + a) . > 0 and Cx I . = 00 i O i

It is quite clear that if x and y Satisfy (3.1), with x near x0 and y near

zero, then for i = 2. + + s + 1 n we shall have (Ax + a). > 0 and thus x . = 0;

similarly, for I = 2. + l,...,9. + j ,  x . > 0 and so (Ax + a). = 0. Thus if we let

r : 9. + j ,  partition elements v € as (v 1,v2,v3) wit~ ~
l 
~ ~

r v2 €

€ J~n-r-s and partition A conformably as

A
11 

A
12 

A
13

A =  A
21 

A
22 

A
23

A
31 

A
32 

A33

we see that we really only have to consider solutions of

1 1 2 1
y ~~A~1

X + A 12
x + a

2 1 2 2y < A
21X + A 22x + a

x2 
> o , * x 2 , A 21x 1 

+ A 22x2 
+ a 2 

— y 2 > = 0

—11-—
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that  is , of

1 - 1 1  1 1
~ A

1 
A
2 

x 
+ 

a x 
( c

y
2 

A
21 

P
22 

x
2 

a
2 ~ r~~~s 2

However , if we recall that

A
11 

Ia1 0

Ax
0 

+ a = A
21 

x~ + ~a
2 

= 0

A 31 [
~3] A 31x~ + a 3

and tha t x~ = 0, then by wri ting

1 1x —

W 2 2x - x0

we can wri te (3 .3) as

1y A
11 

A
12

2 € W + 3c)c (w) , (3.4)
y A 21 

A
22

1y
and with z = 

2 
this is in the form (3.2) . This reduction , though quite simple-,

A A l
is very useful in identifying that portion of the problem (viz., the matr ix  11 12 )

A 21 
A

22~

to which we have to attach conditions in order for the original generalized equation to

be strongly regular at x
0 . In quadrat ic  programming problems with linear constraints

but without implicit constraints on the variables , this reduction procedure amounts to

(1) eliminating the constraints which are inactive at the point in question, and (2)

regard ing as equations those (active) inequal i ty constraints whose associated multipliers

are posi tive .

Before proceeding to establish conditions ensuring that (3.4) will behave well ,

we comment on the question of continuity for such problems . If K is any polyhed r a l

convex set in ~~ S 
the operator

A A l11 12 1w + 
~~~

‘ r
A 21 

A
22] 

P~~~K

— 1 2 —
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is an example of a polyhedral multifunction (12), and T 1 
is also .ci y(’ dr~~l . We

hav e from [12 , Prop . 21 that for some fixed ~~, T 
I 

is the-n locally upper Lipschitzian

with modulus A at each point y
0 

E ~ r+s . that is, for each such y
0 

there exis ts

a neighborhood V of y
0 

such that for each y € V ,

T 1(y)  C T 1(y
3

) + A l l y -  y0 h i B

where B is the unit ball. It is not difficult to show that if T
1 

is also single—

valued on a convex set 0 C ~
r+s 

then T 1 
will necessarily be Lipschitzian there

with modulus A. Thus, if we can show that such an operator is single-valued on come

convex set, we can conclud s immediately that it is also Lipschitzian there.

In the following theorem, we develop conditions for single-valuedness of such an

operator . We use the idea of a Schur complement: if a matrix A is partitioned as

A =  
A
11 

A
12

A21 A22

with A
11 

and A
22 square and A

11 nonsingular, then the Schur complement of A
11

in A , written (A/A
11

) ,  is defined to be A
22 

— A
21

A
1~

A12 . An interesting treatment

of this idea may be found in [1)

THEOREM 3.1: Let r and s be positive integers, and let K c ~~S be a non-

empty closed convex set. Let A be an Cr + s) x (r + s) matrix:

A = 

A
11 

A
12

A
21 

A 22

r+s
where A

11 
is r X r. For w € P define

Tw : Aw +~~s)~ (wI

For T
1 

to be a Lipschitzian function defined on all of ~ r+s , it suffices that:

( 1) A
11 

be rionsingular -

and

(2)  (P/A
11
) be positive definite.

—13—
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In the special case in which K = P~ , (2) may be rej~4aced by

(2’) (P/A
1
) have positive pr~~~~~~a1 rninots,

and conditions (I) and (2’) are thi n both neeessary and sufficient.

PROOF : For the first assertion , suppose that (1) and (2) hold . Let

1

i ~
‘l i r i 5y : , y

1 
C P , y2 

C P • 1 = 1,2

and consider the system

y
1 

€ Aw’ + 3c) (w’) . ( 3 . 5 )

This is equivalent to

= A
11
w~ + A12w~

C A w ’ + A
22 w~ +

As A
11 

is nonsinqular , we can see that

= A
1~~
y~ - A~~A12

w~ , (3.6)

so that (3.5) holds if and only if (3.6) holds and

— A21A1~ y~ 
C (A/A

11
)w~ + a

~K
(w
2
) . ( 3 . 7 )

The operator defined on P~ by

S(w) : (A/A
11

)w  ÷

is maximal monotone ; as (A/A
11

) is posi tive d e f i n i te, S(w) is also strongly monotone,

and thus its inverse is LipSchjtzian on all of E~~. Thus , for some fixed L,

Ilw~ - w~ }I L hl z l - z2 11 LII 
~~~~~~~ 

XI II fly
1 

- y
2

j~

This inequali ty, together with (3.6), implies that for a constant M independent of

1 2
y and y

1 2 1 2lw - w < M i ly - y II
which proves the sufficiency of (1) and (2)

— 14—
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~Jow assume that K = P and replace (2 )  by ( 2 ’ ) .  For suf f ic iency ,  note that

(3.7) is the linear complementarity problem

(A/A 11
) w~ — z1 > 0

w~~ > 0  (3.8)

(w ~~, (A/A 11
)w~ — z~~> = 0

where ( . , . )  denotes the standard inner product. It is known (6] that (3.8) has a

unique so1ut~~o~ for each € p5 if and only if (A/A11) has positive principal

minors. view of c3 .~~’ and our earlier comments about polyhedral multifunctions,

this is er~o-o.-:. to r o ve  sufficiency . For necessity , suppose that T 1 is Lipschitzian

on all of r ~ . :f A
11 is singular , let u be a poin t of not in the range

of A 11. Le t v be a point of p
S with all of its components strictly negative, and

for any non-ne~ ative define y~ := [
~

}. We know that y
0 

C T(0), and by the

assumed properties of T
1 

we know that for all small positive A the point

w
A

T
1(y

A
) :

w
2

wi l l  be near the orig in . However , we have

A A A
v — A21

W
1 

— A 22w 2 e ~~ (w
2)

+

and for small the left—hand side will be strictly negative in all components,

imp lying tha t w~ = 0. But then

Au = A
11
w~ + A12

w~ = A
11

w~

contradicting our choice of u. Thus A
11 must be nonsingular , so (A/A11) is well

defined . Now by our previous analysis T 1(y )  wi l l  be a singleton for each y C

if and only if the complementarity problem (3.8) is uniquely solvable for each z1 € p5

W~ have already remarked that this is equivalent to (2’), and this completes the proof.

W~ observe that if K is a cone in Theorem 3.1 , then the operator T is positively

homogeneous (i.e., for > 0, T(Ax ) = A T ( x ) ) .  In that case , for T 1 to have a

— 15—
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property such as uni :pie so l v aicilc t ,’ on c l i  of ~~t is necessary and suffic ;:t

that that prope r ty hold cc any cc - ; - i t t c  sod of tb ’ orig in . Also , the concluc -

Theorem 3.1 are’ not c oval o l a t e - 1  if eith er of the cc ; -a - : -; ~ r 
and 2-~~ do, c, r i o t  a)

(i.e., if the set K is its e lf , or is K ) .  In f~~-t , tIe arguments are

s impl i f ied  in that  ease ;  of ,-ou c-c.- , the obvious change-s in the’ un~~ct lorO ; (1). )2) and

(2) must be made.

The follow inq corollary r late-s the conditions just develope d to the- rcc~ :-rty of

strong regularity which we used in Sec tiOn 2.

COROLLARY 3.2: Let C b0 a poly hedral convex set in let A be- n n,

n
a f  P , and let x solve

0€  Ax + a + . (3.?)

Let the reduced form of (3.9) at x
0
, if not vacuous, be

0 €  Sw + 
~~ r 

(w) , B = 1B11 
B
12 

, (3.10)
XJ( [p21 

B
22

where K is a polyhedral convex cone in P . For (3.9) to be strongly regular at x
0

it suffices that (i) the reduced form be vacuous or that (ii) B
11 

be nonsingular and

(B/B
11
) be positive definite. If K = then for (3.8) to be strong ly r egu l ar at

x
0 

it is necessary and sufficient that (i) the reduced form be vacuous, or (ii) B
11

be nonsingular and (B/B
11) have positive principal minors.

PROOF: Immediate from Theorem 3.1 together with Theorem A.4 in the appendix.

4. Applications and examples. Having developed the theoretical as)ectcc of strong

regularity in Sections 2 and 3 , we apply these developments here to problems in

complementarity and in nonlinear programming . We first give an example from complemen-

tarity : consider the linear complementarity problem

Ax + a > 0

x > 0

<x ,A x + a > 0

-16-
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in which

1 1 1 — l

A =  4 5 1 , a —4

7 1 1  0

This is equivalent to the generalized equation 0 e Ax + a + ~~~ 3 ( x)  . Th e matr i x  A
P

is neither positive definite nor a P—matrix (i.e., a ma tr i x  wi th ‘positive !-rincir,al

minors), but the problem has a solution with x~ = (1,0,0). Noting that the third

component of Ax
0 

+ a is positive, as is the first component of x
0
, we can apply the

reduction procedure to obtain the problem in reduced form as

1 l i z  z
1 ÷ a ~,

4 5 J x2

where := x
1 

— 1. The conditions for strong regularity thus reduce to the require-

ments that the subinatrix (11 be nonsingular and that its Schur complement be a P -matrix.

As the Schur complement is [5) — (41 (11
1
(11 = [13, we see that this problem is strongly

regular at x
0
. The reader may wish to check that if the entry of 5 appearing in the

matrix is changed to 4, the problem is no longer strongly regular at x
0
, al though

remains a solution . In fact, with that change one finds that if the second component

of a is perturbed to —4-s (c > 0), the resulting problem cannot have any solution

near x
0
, although it has the solution xT = (0, 1 ÷ s/4, 0) . Even with c = 0 the

solution set consists of the line segment { U — A) (1,0,0)
T 

+ A (0 1 0)
T

1 0 11

so that x
0 is not an isolated solution.

We next examine the standard nonlinear programming problem

minimize 8(n)

subject to g(x) 0 (4.1)

h (x) = 0

where 8 , g and h are Fr~ chet diff erentiable functions fran som e open set 0 C

into F, and respectively. The optimality conditions for (4.1) are

— 17— 
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£‘ (x,u,v) = 0

g(x)~~~~0

h(x) = 0 (4.2)

u > 0

(u ,g(x)> = 0

where u and v are points in P~ and P9 respectively,  and where

£(x ,u,v) :=  0 ( x )  + (u ,g(x)> + (v ,h(x)) and the prime indicates differentiation with

respect to the f i r s t  va r iab le  C x )  . The conditions (4.2) can be written more conveniently

as the generalized equation

.C’(x ,u ,v) x

0 € —g(x) + 3i4c u , (4.3)

-h (x) v

and we shall consider the question of proving strong regularity at a solution of (4.3)

If the components of such a solution are denoted by x
0
, u

0 
and v

0
, we can parti t ion

the vector g(x
0
) into smaller vectors g~~(x0

), g°(x
0
) and g ( x

0
) ,  of dimensions

r , s and t respectively, and par t i t ions  u
0 

conformably into u~~, ug, and u
0 

so that

g~ (x0
) = 0, u~ 

> 0

g (x 0 ) = 0, u
0 

= 0

g (x
0
) < 0 , u

0
0

where the ordering is componentwise . The linearization of (4.3) about the solution we 
—

are examining  can , af ter sui table rearrangement, be wri tten as

~~~~ 
1
~T G

+T 
G

OT 
G
T 

x — x0 
0 x 1

-H 0 0 0 0 v - v
0 

0

+ + + +
O e  -G 0 0 0 0 u - u  + 0 +

~~~~ ~~
u , (4.4)

0 
0 ~~~~~~~~~~~~~~~~ 

0
—G 0 0 0 0 u — u

0 
0

-G 0 0 0 0 
- 

u — u -g (x
0
) U ]

where £“ denotes £ ‘(x ,u
0
,v
0
), H denote-s h’ (x

0
) , G

+ 
denotes g

+ (x
0
), etc. One

can check that the reduced form of (4.4) is

— lH—

4



‘1’ #T~~ OT£ H C , G y y

0 € :+ : : ~: :+ + ~~~~n+q+r5~~S :÷
—G° 0 0 ‘0  u

0

where w~ := u
+ 

— u~ ; the dotted lineg in the matrix indicate the appropriate partition-

ing for the analysis of Section 3. Using the results of that section , we see that

necessary and sufficient conditions for strong regularity of (4.3) at the solution in

question are that the matr ix

£“ H T G+T

—H 0 0 (4. 5)

-G~ 0 0

be nonsingular , and that its Schur complement

[G 0 0 0) £“ HT G +T 1 
~

OT

—H 0 0 0 (4.6)

—G~ 0 0 0

be a P-matrix. Of course , if g°(x
0

) is vacuous then the matrix in (4 .6)  does not

appear , and in that case one may apply the standard implicit-function theorem as was

done in , e .g. ,  [3 3 ,  (41, and (11). If g° (x 0
) is not vacuous , then the results given

in this paper permit one to carry out a similar analysis even though the classical

implicit-function theorem does not apply.

In the case in which g0 (x 0
) is vacuous , it is well known that certain standard

assumptions on the problem suffice to guarantee nonsingularity of the matrix in (4.5)

above . In terms of our notation, these are:

(a) the second-order Sufficient  condition [3, Ch. 2 ) :  For each non—zero y such

that

G~ y 0

G0y < 0

Hy = 0

one has ( y ,C” y ) > 0.

-19-
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Note that  G° appears in th e -  q c - r c - r a l  form of Ic -c - , : r c rcd i t  ion s ;  ;f q 0 (x
0

) w’ re

vacuous then of course G° would not aI-l-’ -ar.

(b)  l inea r  m d i  oce of grad i e nts of the bind i ng constr aints: Tb~ matrix

— G° has f u l l  row rank .

H

Cc) strict comj1lementary sla ckness: g°(x
0
) is vacuous.

Actually, only (a) and (b) are required for nor.singularity, but  ( c )  ~s needed to

make sure that (in our terminology) the reduced form of the problem c o r t ei ns only c - c ~ua~~ i( ,n ~- .

We shall show now that condition (b), together with a sli ghtly strengthened form

of (a), will suffice to guarantee that conditions (1) and (2) above are met , and thus

that (4.3) is strongly regular at the solution we are considering . The strengthened

form of (a) is:

(a’) the strong second—order s u f fi c i e n t_condition:  For each nonzero y w i th

G~ y = O

Hy = 0

one has (y.f”y) ~ 0.

Of course , if g
0(x

0
) is vacuous (i.e., if Cc) holds) then (a) and (a ’) are the

same, but in general (a ’) is a stronger r eq u i r e m e n t  than  is ( a ) .  Wi th t his  change ,

we can prove that even without strict comp lementary slackness the problem (4.3) will

be strongl y regu la r .

THEOREM 4.1: Let 0 , g and h be functions from an ope n set ~ ~ n ~~

and 1~~ respectively, which are twice differentiable at a p ~~ nt x
0 

C h .

tha t x
0
, together with points  u

0 
€ and v € ~

q solves (4.3) . If the stronq

second-order sufficient condition holds at (x
0

,u
0
.v0

) togeth~-r wcth linear indcjender:ce

of the gradients of the binding constraints, then (4.3) is strongly regular there.

PROOF : To prove that the matrix in (4.5) is nonsinqular , suppose tha t a , i~ arc? c

are such that

-20—
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T +T£“ a + H b + G

-Ha = 0 (4.7)

+- G a  = 0 .

Premultiplying the equations in (4.7) by aT, b
T 

and cT re sce-ctivt-ly and adding the

resul ts, we find that (a ,C” a) = 0. This, together with th~ Second and third equations

of (4.7) and the strong second—order sufficient condition , implies that a = 0; the

first equation of (4.7) and the linear independence assumption now imply that b and c

are also zero. Thus the matrix is nonsingular , so that the Schu r complement shown in

(4.6) , which we shall denote by 5, exists. To gain some additional information

about its structure, we note that the equations

C” v + HTA + G+TB = GOT

—HV = 0 (4.8)

+
-CV = 0

uniquely define matrices V(n s), A(q X s) and B(r s). We then have

s =  [C 0 0 01 V = G °V

A

B

but upon premultiplying the first equation of (4.8) by v T we find (since I” is

symmetric)  that S = vT.C ,,v . Thus S is synsnetric, so i t wi l l  he a P -ma t r ix  if and

only if it is positive definite . Suppose that z e P5 
with ( z,Sz) < 0. Then with

y : Vz , we have ( y ,C ”y > 0 and (from (4.8)) Ny = 0 and G~y = 0. By the Strong

second-order sufficient condition we must now have y = 0. Postinultiplying the f i r st

equation of (4.8) by z and using Vz = 0 we have H
T
Az + 0

+T
55 = G°z, which imp l i e s

z 0 by the linear independence assumption. This completes the proof.

It is clear that the conditions of Theorem 4.1 , al though s u f f i c i e nt , are not in

general necessary for strong regularity (consider the problem of minimizing the

scalar function ~~2 with no constraints and let = 0 ! ) .  It may not be SO clear

whether we could have used the standard second-order sufficient condition (as q~ven in

—21—
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(a) above) in the hypothesis of Theorem 4.1 instead of the somewhat stronger condition

(a ’). To see that this cannot be done , consider the following example:

1 2 2
minimize ~ (x1 

— x
2
) - px

1

subject to —x
1 

+ 2x 2 < 0 (4.9)

“1 
- 2x 2 

< 0

where p represents a perturbation parameter . We can write the necessary optimality

conditions for (4.9) as the linear generalized equation

1 0 -l -l x
1 —p

0 -1 2 —2 x
2 

0 x
2

O € 
1 -2 0 0 U

1 

+ 
0 

+ 

~~~~~~~~ 
~1 

(4.10)

1 2 0 0 u
2 

0

and we see that for p = 0, (4.10) is already in reduced form with its unique solution

at the origin in P~ . However , for each positive p there are three solutions , as

follows:

p
Ci) x = , U = 0 (saddle point)

0

2 
2 

1 
1

(ii) x = p , U = p (local minimum)
1 0

2 
2 

1
(iii) x = p , u = 

~~
- p (local minimum)

—l 1

By making p sufficiently small , all  of these solu tions can be brought with in  any

preassigned neighborhood of the origin. It follows that (4.10) is not strongly regular

there ; however , one can verify easily that the solution of (4.9) for p = 0 satisfies

both the standard second-order su f f i c i en t  cond ition and the l inear independence condi-

tion. Those conditions would therefore not suffice to establish Theorem 4.1.

We have dealt  with the nonlinear programming problem in the form (4.1) because

tha t fo rm (with  no implicit constraints on x )  is fr equ en t ly  seen in the l i terature .

—22—
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However , it is perhaps worth pointing out here that for some problems one may do much

better by formulating them with implicitly-constrained variables . For example , consider

the problem of minimizing the expression (c ,x) + a l i x i !  for x £ P~~, where

is the maximum absolute value of the components of x. If, for example , we take

c = [ i - , o] and a = 1 , one way to formulate this problem using explici t  l inear

constraints is:

min imize  ri + ~~
- x

1x 1
,x2,n

subject to I x
1 

(4.11)

—I x
2

where I denotes the ident i ty  mat r ix  and e is a vector of ones. The solution is

evidently r~ = 0, x = 0, and all four constraints are binding ; thus one cannot use

Theorem 4.1 to show that the problem is strongly regular . In fact , this problem is not

strongly regular : if the vector 0 is perturbed to (—c , 0, ~~ 0) T for s > 0 ,

then the optimal solution set becomes {(0,A ,c) IA C (-5 ,5] . However , if one formulates

the problem as

1mi nimize fl + -
~~ x~

x1
,x

2 ,n

(4.12)

subject  to x
2 

e c : x
2 

1~ > I I x I I ~,

Ti Ti

F then it can be expressed by the generalized equation

2 x
l

0 € + 3’
~
’
~~ 
‘
~2 

(4.13)

and the reduction procedure alone suffices to show that (4.13) is strongly regular (see

the Appe ndix;  here the reduced forts is vacuous, since in this  case the face F is

j ust the or igin) . Of course , this problem can be solved by inspection, but it

—23—

4

— ---

~

----

~

-- -~~~~~~~~~~~~~ —- - - . -~~~~~~~~~~~~~~~~ -— - -



~ - - - -----.- -=- - —-—-

conveniently illustrates the point that formulation can make cr i t i -  - ii - li ff - F -re - -’ 3;:

the stability properties of a problem . Here the formulation in (4.11) sakes ‘-v -r ~ rI, ~

structure of the function subject to perturbation, whereas in the or ic l i nal

problem the data subject to perturbation might reasonably havec been only -: and tb-

components of c. This feature of the problem is appropriately reflected in the

formulation given in (4.12), and this illustrates the fact that the standard forn (4.1)

may sometimes be seriously ina dequa te for  proper repr esen tat io n of a problem .
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APPENDIX: Conversion of a Linear Generalized~~~ uation to Reduced Form.

We shall deal here wi th the linear generalized equation

0 C Ax + a +

where C is a nonempty polyhedral convex set in ~ n A ic n • n and a If

x is a solution of (A.].) , we shall show that in t h e  general -:dO.r one can f ind integers

r and s, with r + s < n , a pointed polyhedral cone y C ~~ of dimension s,

and an (r + s) X Cr + s) matrix B, such that rhere is a natural correspondence

between solutions of

y € p,x + a + (A.2)

for small y and for x near x
0
, and solutions of the reduced form

z £ Bw + 
~~
‘ r (A.3)
P X K

for z and w near zero. In the case C = ~~~~ ~~ this is clear , as has a l r eady

been remarked in the main part of the paper : it corresponds to removal of the inactive

constraints.” In other special cases, either K or ~ r (or both) might be vacuous,

so that the problem would become even simpler. For the general case, we need some

properties of polyhedral convex sets, which we shall list here without proof. We use

the notation T
~
(x0) for the tangent cone to C at x

0 
(i.e., for a

~ c
(x
o
(o); for

general information abou t tangent cones , polyhedrali ty ,  etc., see (13] . In all of the

following statements , C is a nonempty polyhedral convex set in

PROPOSITION A.1: Let x
0 

S C. Then there exists a neighborhood U of the origin

such that (C - x
0
) ri u = Tc (x o

) fl U.

n *
PROPOSITION A .2: Let y

0 
S P , and let F := ~‘~~ (-y~ l . Then for each x € F,

= 
~
4e
~
(x) + y

0P = :  Cy + ay0ly £ ~
r(
~~

(x) ,a > 0). Further, for each y near y
0
,

C F.

The next proposition provides the key to establishing a correspondence between

solutions of (A.2) and those of a problem equivalent to the reduced form (P..3)
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PROPOSITION A .3: Let y
0 

and F be as in Proposi~~ion~A .2. Let x0 
C F, and

wri te T := T
F

(x
O
). Let L be the subspace parallel to F. Then there exist nei ghbor—

hoods U and V of th~ or~~~ n, such that for each h C U and each k C V ,

0 € (y
0 

+ kI + 2rP
~
(x
0 

+ h)

if and only if

0 € P
L
k + 3FPT

(h)

where P~ denotes the ortho9onal projector on L.

P ROOF : Applying Proposi tion A .l to F , we can f ind  an open neighborhood U of

the origin such that (F - x
0) 

fl U = T fl U . By Proposit ion A.2 , we can find a neighbor-

hood V0 of the origin such that fo r each k € V
0
, if 0 € (y0 + k )  + then

x € F. Also, there is a neighborhood V
1 

of zero such that for any x € F,

+ y
0
P~ ) 0 C 

~~~~ 
+ y

0
[0 ,lJ := {y + ay

0~
y C 

~~~
(x). 0 < a < 1)

To see this, note that 3rp~~(’) has only finitely many values on F; for each of these

values, say a polyhedral convex cone P, let a be a simplex containing the origin

in its interior . The set (P + y0P~ ) 0 a is a bounded polyhedral convex set, so it

can be written as the convex hull of points q
1 

q~ in P~~. For each i,

= + a .y
0
, with p C P and a . > 0. With := o/max{l,a

1 
a )  it follows

that (P + y0
R )  (~ C P + y

0
[O ,ll . Repeating this procedure for each value of

on F and intersecting the resulting simplices , we obtain the required V
1
. Finally ,

we let V : V
0 

fl (—V
1
). Now choose any h S U and k € V.

(only if) : Suppose 0 € (y
0 

+ k) + arP
~
(x
0 

+ h) . As k e V
0
. we have x

0 
+ h € F ,

and thus h C (F — x
0
) ~ U , so actually h S T. Let t S T; we shall prove that

< P
L
k.t - h) > 0. To beg in with, note that we may replace t — h by

A (t — h) = 1 (1 — A)h + ~t1 
— h for any small positive A; thus we lose no generality

by assuming that t e T fl II (recall U was open , so h e m t  U) . Then x
0 

+ t € F ,

and of course x
0 

+ h e F , so

t - h (x
0 

+ t) — (x0 
+ h) € L.

-26- 
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As y
0 

is orthogonal to L by construction, we have (y
0 
+ P 

1
k.t - h) = 0. There—

L
fore , si nce k = P k + P ,k, we have

L 
L

(P
L
k.t - h) = (y

0 
+ k ,(x

0 
+ t)  — (x

0 
+ h)) > 0

since we assumed that 0 € (y
0 

+ k) + + h). It follows that 0 e P
L
k +

( i f ) :  Suppose that 0 €  PLk + 
~~T

(h). As h e  Tfl U, we have x
0 
+ h e  F ; as

h e m t  U we have also that T~~’~ 
= ~~~~ (ic

0 
+ h) = a*C ocO + h) + y0P , where we

have used Propositions A. l  and A.2. Noting that L
1 C 3

~ F (x O + h ) ,  we see that since

k = P k + P  k,L I

O S  P
L
k + a

~ F (x
O + h) k + 3’

~F~~ O 
+ h)  = k + y

0
P~~+ 

~ c~~o 
+ h)

But then —k € (
~*~

(x
0 

+ h) + y
0P~

)0 V
1
, so for some ci € (0 ,1],

—k — my 0 
€ 

~ c(ico + h)

and since x
0 

+ h € F, we have

~YO ~ ~*~~
(
~ o + h)

Multiplying the second inclusion by (1 — ci) and adding it to the f i rs t  we obtain

0 € (y
0 

+ Ic) + 
~~C~~ O 

+ hI

which ccx~pletes the proof.

Using Proposition A.3, we can now construct the reduced form of (A.l) for general

polyhed ral C. To do so, suppose that x0 solves (A . l ) . Define y0 := Ax0 + a,

and let F , T and L be defined as above . Let M be the lineality space of T and

choose orthonor-mal bases b , . . . ,b for M , b , .. ., b for L (1 N
1
, and1 r r+ 1 r+s 

b for L1 ( note : we assume here for generality that none of these spaces

is of zero dimension; if one or more are zero—dimensional, the analysis is only

simplified) . Assume that A and all vectors in Pn are written in terms of the

- 1 2 3  . 1basis b1,. , . ,b ;  we shall write , for example , x = (x ,x ,x ) with x € N ,

I L 0 M 1, and x 3 e L 1. We ca n Write T = N + (T (I M1) ,  and the cone K : T 0 N
1

is pointed and containe d in L (~I N
1; in fact , si nce L = aff T , K has the dimension
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of L I~ M
1
. Thus , if h € ‘“ we~ have

h = (h
1
,h
2
,O) , h 1 

C ~~~~ 1:
2 

i K

:~ (h) = (0) ~ I~ (h
2
) 

n-r—s 
-

Now apply Proposition A.3 , wi th y
0 

: Ax0 
+ a, to obtain neighborhood s U ~r,d V

of the origin; construct additional neighborhood s N of x
0 

and W of 0 such ti,at

if X e  N and y E  W then

h : = x - x
0

€ U

k := (—y + Ax + a)  — (Ax0 + a) = Ah — y € V

Choose any x € N and any y € W. Now Proposition A.3 tells us that (A.2) holds for

x and y if and only if

0 e P
L
(Ah - y) + 3’

~
’T~~~ 

(A .41

Writing

y
1 

h
1 

A
11 

A
12 

P
13

y = y2 , h = h2 , A = A
21 

A
22 

A
23

y
3 

h
3 

A
31 

A
32 

A
33

we see that (A.4) is equivalent to

h
3 

= 0, 
y
1 

A
11 

A
12 

h
1 

+ 

10) 

2 ‘ (A.5)
y A

2 1 A 22 h
2

arid with

z : , w : 
h
1 

, B : 
A

11 
A
121

y
2 

h 2 A 21 
A

22J

we see that the second relation in (A.S) is of the form shown in (A.3) . We have thus

established the required correspondence.

This construction , together with Proposition A . 3 , now permits us to state a

general criterion for strong regularity of the generalized equation (A.l)

THEOREM A .4: Let C be a polyhedral convex set in P°; let A be n x n and

a € P~~. Suppose that x0 
e P’~ solves (A.l) . Then (A.l) is strongly regular at x

0
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if  and only if i t s  reduced form ( i l  is vacuous, or (ii) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

valued on all of L.

PROOF : We assume the notation used in the earlier part of the appendix.

(if): First, suppose the reduced form of (P.1) is vacuous. This means that

L = {o}, so that F is the singleton (x
0
} and T ~ {O 1 .  Propos i t ion  Tc .3 now implies

that for any y near zero, x
0 

itself is the unique solution of (A.2) near x
0
.

Thus (A.l) is strongly regular . On the other hand , suppose t ha t  the inverse of the

re ’uced fo rm is single—valued on all of ~ n (and therefore Lipschitzian there , as

we have previously pointed Out). Consider the neighborhoods W and N constructed

above , and find a ne ighborhood W
0 

of the origin with W
0 
C W and having the propertyry1 h1

that if y e  W
0 

and if I 2 and some 
2 

satisfy the second relation in (A .5),

LV h

then x0 
+ h2 € N (here we have used the continuity of the reduced form ’s inverse).

Choose any y C W
0; by hypothesis the second relation in (A.5) is solvable by a unique

h
1

h With x := x
0 

+ h
2 

, we have x C N, and therefore x and y solve (P.21
2

h i
Further , the solution x is unique in N because the solution of (A.5) is

h
2J

unique. Thus the restriction to W
0 

of N 0 [A(S) + a + 3l4
~~

( .) ] 1 is a single-valued

function; the Lipschitzian property now follows from [12, Prop. 2J and our earlier

remarks. Therefore (A.’) is strongly regular at x0.

(only i f ) :  Suppose that (A.1 )  is s t rongly  r€- ~u 1ar at x 0 , and that its reduced

form is non-vacuous; choose neighborhood s S of 0 and Q of x
0 

so that for each

y € S, (A .2) has a solution x € 9 which is unique in ç~ (here we are again using

FY 11continu ity). Let S
0 

:= S 0 w and := 9 0 N , and choose any in the projection

- Y ].1of S
0 

on L (a neighborhood of zero in L). Let y C with P
LY 

= . BY
y
2J

construction , a solution x e 9 e%ists for (P . 2) ; d e f i n e  h := x - x • B the discus-
0

sion preceding this theorem, we se-c- that h = 0 and that and I satisf~
y
2J 

h
2J

—2 9—



____ -~~-.-- - -  - —--~~~- -~~~ —--—- .-- - •  
- 

- - -

the inclusion in (P . 5 ) .  Let G := {[] [g2] 

C 9 - x
o}; 

this is a neighborhood of

the origin in L, and i t  contains 1 If there were another solution of

h1 
It
2 

h~

(P.5) in G , then x
0 

+ h~ would belong to 9 and would sa lve (P.2), contradicting

0

strong regularity . Therefore the reduced form of (A.1) is uniquely solvable for each
Yli in the neighborhood 

~L5O~ 
but the reduced form is positively homogeneous, so

y
2J

y
l

it is uniquely solvable for each C L. This completes the proof.
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